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Abstract

Transfer learning is typically performed between prob-
lem instances within the same domain. We consider the
problem of transferring across domains. To this effect,
we adopt a probabilistic logic approach. First, our ap-
proach automatically identifies predicates in the target
domain that are similar in their relational structure to
predicates in the source domain. Second, it transfers the
logic rules and learns the parameters of the transferred
rules using target data. Finally, it refines the rules as nec-
essary using theory refinement. Our experimental evi-
dence supports that this transfer finds models as good
or better than those found with state-of-the-art, and in a
fraction of the time.

Introduction
Recent progress in machine learning has allowed for effec-
tive and accurate learning in the presence of large amounts
of data. However, when the data set is small, learning per-
formance may suffer. To alleviate this issue, transfer learn-
ing techniques (Pan and Yang 2010) were developed. In
these methods, a source task is used for learning a model
(or a set of models) that is then transferred to a related
task where learning can be efficient given the bias of the
source model. This technique has been successfully applied
across several problems such as classification and sequen-
tial decision-making (Torrey et al. 2008; Raina et al. 2006;
Mehta et al. 2008).

While successful, most of these techniques work with re-
lated problems and do not necessarily transfer across seem-
ingly unrelated domains. To achieve this domain indepen-
dent transfer, a richer representation such as first-order logic
(FOL) is a minimal requirement (Davis and Domingos 2009;
Haaren et al. 2015; Mihalkova et al. 2007; Mihalkova
and Mooney 2009). As a motivating example, consider the
NELL system (Carlson et al. 2010) that reads the web.
Currently, NELL is well-versed in the sports domain, hav-
ing learned several rich rules about sports organizations. To
transfer the acquired knowledge to a different domain, say fi-
nancial organizations, it is imperative to use a rich represen-
tation that allows modeling the objects, their relations and
the uncertainty that inherently exists in both domains.

For learning from structured and uncertain domains, Sta-
tistical Relational Learning (SRL) (aka, Probabilistic Logic
Models (PLM)) has been developed (Getoor and Taskar
2007). PLMs combine the richness of first-order logic with
the ability of probability theory to handle uncertainty. Two
different approaches have been applied for cross-domain
transfer based on PLMs. The first set of methods (Davis and
Domingos 2009; Haaren et al. 2015) employ second-order
logic to model regularities between seemingly unrelated do-
mains. The inherent assumption is that these methods possi-
bly share a common sub-structure that can be exploited us-
ing higher-order logic. The second set of methods aim to find
an explicit mapping of predicates using local search meth-
ods (Mihalkova et al. 2007; Mihalkova and Mooney 2009).
Both these approaches employ the PLM of Markov logic
networks (MLNs) to capture the source domain knowledge.

We follow the second approach of explicitly mapping the
relational structure of the source to the target domains. For
this purpose, inspired by the research in Inductive Logic
Programming (ILP) (De Raedt and Kersting 2008), our ap-
proach performs “mode-matching” that compares the modes
in both predicates1. Mode-matching compares the types
of the arguments in the predicates of the source and tar-
get domain to identify potentially similar groups across
the domains. Once the match is obtained, we perform a
mode-based tree construction that allows us to construct the
clauses in the target domain. This matching of the modes
and the construction of the initial knowledge in the target
domain can be seen as introduction of a language-bias for
the target domain. Hence, this algorithm is called language-
bias transfer learning (LTL).

Once the potential clauses are constructed, LTL employs
two different types of refinements. The first is by exploiting
the power of PLMs in allowing the softening of the rules.
LTL learns new parameters for these rules from the train-
ing data in the target domain. We consider both weights (as
with MLNs (Domingos and Lowd 2009)) and conditional
probabilities (Kersting and De Raedt 2007) with combining
rules (Natarajan et al. 2009). Some of the rules can be spu-

1Note the difference between modes in ILP and modes of prob-
ability distributions. Modes inside ILP define the argument types
of a predicate and help in the inductive search of the rules



rious or inapplicable for the target, because they are sim-
ply constructed from predicate matching. Hence, softening
them using training data allows for weighing down the rules
that are not supported by data. As we show empirically, with
less data, softening is an easier task than learning both the
rules and the parameters. The second improvement is em-
ploying theory refinement (Ourston and Mooney 1990) by
which LTL modifies some of the rules based on the train-
ing data. Specifically, it considers dropping a predicate or
adding an attribute of one of the objects already present in
the rule. For instance, if the rule mentions an organization
and an employee, then our algorithm will search the space
to potentially add an attribute of these two objects (say de-
partment) based on the improvement in the likelihood of the
data.

Illustrative Example 1: Our language-bias transfer
learning method relies on creating mode-matched trees
(M2Ts) in both the source (say UW-CSE (Richardson and
Domingos 2006)) and target (say IMDb) domains. The sim-
plified M2Ts for the UW-CSE domain that models the re-
lationship advisedBy is shown in Figure 1-left, and is gener-
ated from the rules in the source domain model. The rules
correspond to predicting the advisor of each student, both of
which are represented by the type person. The colors repre-
sent the parameter tying of the types in the clause, and the
leaf nodes of the tree denote the rule - represented by a path
from root to that leaf, if any, that has been learned or pro-
vided by an expert 2. Based on the search process over these
parameter types in the source, clauses with a similar struc-
ture are constructed in the target domain where the model
predicts the relationship workedUnder. This is shown by
Figure 1-right. Here, the rules predict if an actor has worked
for a director, both of which are represented by the type per-
son. As can be seen, for one source clause we get multiple
target clauses because each source predicate is mapped to
multiple target predicates, for example, publication is auto-
matically mapped to movie and genre, as shown in the figure.

We make the following key contributions: First, we de-
velop a language-bias based transfer learning algorithm
(LTL) that allows for cross-domain transfer. Following the
successes of several classical AI methods - ILP for predicate
matching, SRL for modeling uncertainty in relational do-
mains and theory refinement for improving background the-
ories - we propose a transfer learning algorithm that lever-
ages the benefits of all these methods. Second, we demon-
strate the effectiveness and efficiency of our transfer learning
algorithm in several real, complex tasks.

We proceed as follows: we first present the background
necessary for the paper before outlining the key research
ideas in the work, then we provide experimental results in
several domains before concluding by outlining interesting
research directions.

Related Work
The advantage of Probabilistic Logic Models
(PLMs) (Getoor and Taskar 2007) is that they can

2Note that every path from the root to the leaf is a rule or clause
in FOL. We use the words clauses and rules interchangeably.

succinctly represent probabilistic dependencies among the
attributes of different related objects, leading to a compact
representation of learned models. We consider two kinds
of models in this work: undirected models that use weights
and directed models that consider probability distributions.

One of the most popular PLMs is Markov logic networks
(MLNs) (Domingos and Lowd 2009). An MLN consists of
a set of formulas in first-order logic and their real-valued
weights, {(wi, fi)}. Together with a set of constants, we
can instantiate an MLN as a Markov network with a node
for each ground predicate (atom) and a feature for each
ground formula. All groundings of the same formula are
assigned the same weight, leading to the following joint
probability distribution over all atoms:P (X = x) = 1

Z
exp (

∑
i wini(x)), where ni(x) is the number of times the

ith formula is satisfied by a possible world x and Z is a nor-
malization constant (as in Markov networks).

On the other end of the spectrum are directed models such
as Bayesian Logic Programs (BLPs) (Kersting and De Raedt
2007) that employ conditional distributions for every clause
(primarily horn clauses). The distributions, due to multiple
instances of the same rules and multiple rules, are com-
bined using combination functions (Natarajan et al. 2009)
that combine multiple probability distributions into a single
distribution. For the purposes of this work, it is sufficient
to realize that the use of weights and probabilities are two
different ways of softening the hard FOL clauses.

While there is significant research in learning these pa-
rameterized rules, especially for MLNs (Kok and Domingos
2010; Khot et al. 2011), these methods assume the pres-
ence of large amounts of training data. For learning with
minimal data, the previously mentioned transfer learning
methods that employ PLMs are closely related to our work.
Specifically, the TAMAR algorithm (Mihalkova et al. 2007)
and its extension SR2LR (Mihalkova and Mooney 2009) are
quite similar in spirit. TAMAR maps a source MLN to a tar-
get MLN and uses a concept called consistent-type mapping
which essentially maps one source type in a clause to one
target concept. SR2LR on the other hand transfers short-
range clauses from the source domain to develop longer-
range clauses in the target domain. While these methods as-
sume a MLN representation for the source, our method sim-
ply requires FOL clauses and the relational graph structure.
Other algorithms such as DTM (Davis and Domingos 2009)
and TODTLER (Haaren et al. 2015) use MLNs to create
a second-order representation from the source that is then
used to instantiate clauses in the target domain. While quite
effective, these methods assume a hyperparameter that al-
lows them to facilitate the transfer. We on the other hand,
simply assume that the language bias of the target domain
is obtained from the source domain and show that the data
in the target domain can help in refining this bias to learn a
more accurate model.

Transfer Learning using Language Bias
We first provide the intuition behind our approach using an
example before providing the technical details. We consid-
ered the discriminative setting where we focus only on learn-



Figure 1: Examples of a simplified mode-based matching between the UW-CSE and IMDb datasets. It represents the flow of types which is
shown with colors. Note that in the right figure, we present only a part of the search tree for brevity. Paths in the tree representing clauses are
shown as shown as !(Ri).

ing horn clauses. For the rest of the paper, when we refer to
a query, we refer to the head of the clause.

Given: Weighted (probabilistic) logic rules in the source
domain, a small amount of training data, a set of queries and
the type declarations in the target domain.

To Do: Learn a set of probabilistic clauses in the target
domain for each query.

Illustrative Example: Our language-bias transfer learn-
ing method relies on creating mode-matched trees (M2Ts)
in both the source (say Yeast) and target (say WebKB) do-
mains. The M2T for the Yeast that models protein interac-
tion, shown in Figure 2-left, is generated from the rules in
the source domain model. The rules correspond to predict-
ing the class of the protein. Each edge in the tree represents
both the types that are shared with the query node as well as
the number of variables that are shared across the connected
nodes. The leaf nodes of the tree denote the rule (if any) that
the path from root to the leaf represents. The use of “+” or
“-” sign follows a typical ILP approach for the modes (type
declaration of the variables). + denotes that the variable has
already been defined in the query (correspondingly a - sign
means that the variable is added to the body of the clause but
is not present in its head).

The corresponding search tree for the WebKB target do-
main3, shown in Figure 2-right represents all of the pos-
sible mode-matchings from the root node to any predicate
in the target domain. Note that the example tree represents
only a portion of the search tree for the WebKB domain.
The key idea is that the query deptOf matches with protein-
Class in the source. The predicate interaction has one type
(denoted by +p) that matches with its query proteinClass.
Correspondingly, in the target, the predicates student, fac-

3The goal here is to classify web pages

ulty and department all match with its query deptOf (with a
type +wp present in both). Consequently, there can be sev-
eral possible sub-trees of the query but we present only a part
of the tree for brevity. The paths with the cuts (!) matching
a rule in the source domain (for instance !(R1) and !(R2)),
form the M2T of the target domain.

Paths in the source domain will match paths in the tar-
get domain if the same number of arguments are related at
each link in the path. For example, the red (dashed) lines and
the green (long-dashed) lines show matched paths across the
domains. There may be many such matched paths for every
rule in the source domain. Intuitively, the bias that we are in-
troducing in the target domain is the modes which are essen-
tially a language bias as they restrict the search space inside
the target domain. Another way to understand our approach
is that, in a target domain search tree such as the one cre-
ated by ILP learners (Ong et al. 2005), our method uses the
mode-matches from the source domain to restrict the search
inside the target search tree.

Approach: Modes and types are typically used in ILP
systems to perform search efficiently. A mode in ILP typ-
ically refers to the definition of the types and the search bias
inside a predicate. For instance, specifying that the author
predicate (query) takes two arguments 〈paper, person〉 is
defined as author(+paper,+person). A “-” sign can be used
as mode for a type when it is not present in the query but the
introduction of its predicate can improve the search perfor-
mance. For more details, we refer to the ILP book (De Raedt
and Kersting 2008) but for the purposes of this paper, it is
important to understand that modes are typically used as lan-
guage bias for efficient search. More importantly, if declared
correctly, they guarantee that the search procedure will ter-
minate.

Definition 1 M2Tnode - A node of an M2T is a predicate



Figure 2: Examples of the mode-based matching between the yeast and webkb datasets. The source tree is built from two clauses (R1 and
R2). The red dashed line and the green long-dashed line show corresponding paths across the source and target domains. Note that a single
path in the source domain may “match” with many paths in the target domain. Note that in the right figure, we present only a part of the
search tree for brevity. The final learned set of clauses are the paths that match with a particular rule (shown as !(Ri)).

with its corresponding modes defined for each argument.

Definition 2 M2Tedge - An edge of an M2T is labeled with
two parts. The first represents the modes in the lower-level
M2Tnode that the edge is connected to that are shared with
the query. The second represents the number of variables
that are shared among the two M2Tnodes that are connected
by this edge.

Given the definitions of the nodes and edges, we now define
our key data structure - M2T .

Definition 3 M2T - A mode-matched tree (M2T ) is a tree
rooted at the query M2Tnode and consists of M2Tnodes and
M2Tedges.

While the definition is simple, the origin of this tree is
quite different in the source (M2TS) and target (M2TT ) do-
mains. For instance, for the source domain as shown in Fig-
ure 2-left, this is simply the knowledge/learned model. To
be precise, this represents the set of clauses learned in the
source but connected through their mode definitions. For the
target domain, however, the tree presented on the right side
of Figure 2 is a sub-set of the full search tree. M2TT , on the
other hand (shown as the highlighted part of the right tree), is
the result of applying the mode-matches to direct the search
inside the full ILP search. Hence, for every source-target
query pair, there will be two sets of trees - (source) M2TS

which represents the set of clauses and (target) M2TT that
represents the transferred set of clauses. M2TS is essentially
used to bias the search in the search tree to construct M2TT .
More precisely, the search process (which we explain next),
uses the M2TS to build the M2TT from the potentially large
ILP search tree.

Search Process: Algorithm 1 presents our Language-bias
transfer learning (LTL) algorithm. Recall that every path
in M2TS represents one clause in the source domain. The
GENMATCHES function presents the search process. The
function is called with every path in M2TS and the set of
predicates (PT) in target domain. At a fairly high level,
given the current source path, it constructs the set of M2TT

paths that would form the target domain clauses. The key
intuition is that these M2TT paths will have similar edge
parameters compared to that of the input M2TS path.

More precisely, given the source path (path) and PT,
the function traverses every node in path and finds similar
matching nodes in the full target search tree to construct
M2TT . To do so, the function compares the sequence of
edge parameters in path with the sequence of edge parame-
ters of every path in the full target tree. If there is a mismatch
at any point in the sequence, the search is terminated for that
target path. Hence, potentially for every path, several poten-
tial target clauses can be returned within M2TT for refine-
ment in the next step. Note that LTL does not fully construct
the search tree in the target domain, but incrementally con-
structs it and stops the search in that path when there is a
mismatch in the modes between source and target domains.
This allows it to learn efficiently compared to searching over
all possible clauses.

Refinement of target clauses: We now have transferred
a set of clauses to the target domain. For a single source
clause, many target clauses may have been generated. For
example, when transferring from Yeast to WebKB, 2 clauses
in Yeast generate over 100 clauses in WebKB. This is due to
the fact that protein potentially matches with student, fac-
ulty, staff, and department in WebKB. Also, Yeast has 5
predicates, while WebKB has nearly 15 predicates. Not all of
these clauses capture true relationships in the target domain.
Hence, these clauses need to be refined.

We consider two different types of refinements. First is
the softening of these clauses through the use of weights or
probabilities. Given a small amount of data in the target do-
main, we hypothesize that learning parameters will result in
inaccurate clauses having low weights associated with them
and accurate clauses having higher weights. We compare
two different parameter learning approaches: Alchemy (Kok
et al. 2007) weight learning for MLNs and combining
rules (Natarajan et al. 2009) for BLPs. We used weighted
mean for combining the instances due to different rules and



Algorithm 1 LTL: Language-bias Transfer Learning
function PERFORMTRANSFER(Pt,M2Tsource,QS ,QT )

rules = ∅
for path ∈ M2Tsource do

matchesT = GENMATCHES(path,Pt,QS ,QT )
rules = rules

⋃
matchesT

end for
rules = REFINE(rules)
return rules

end function

function GENMATCHES(path,Pt,QS ,QT )
matches = ∅
for all node ∈ path do

matches′ = ∅
for p ∈ Pt do

. Compare node and source query argument types with p
and the target query

if EQUIV#TYPES(node,QS ,p,QT ) then
for all m ∈ matches do

. Compare p and node variable matches with preceeding
predicates

if EQUIV#VARS(node,p) then
matches′ = matches′

⋃
m ∧ p

end if
end for

end if
end for
matches = matches′

end for
end function

mean for combining the instances of the same rule. This ap-
proach was previously demonstrated to be effective (Natara-
jan et al. 2009) and hence we chose this combination over
other popular combination functions such as Noisy-Or. We
implemented gradient-descent with mean-squared error as
the optimization criteria for learning the parameters. For
weight learning in MLNs, we simply used Alchemy. In our
implementation, we use the weights from the source clauses
as initial parameters and refine them using data. It is possi-
ble to start with zero weights (or uniform distributions) and
learn the new parameters. The two approaches did not yield
significantly different results in our experiments.

The second type of refinement that we consider is the clas-
sic theory refinement (Ourston and Mooney 1990) where the
key idea is to add or delete predicates in the clauses. This
attempts to make the inaccurate clauses more applicable to
the target domain. The significance of this refinement is that
it allows the learning algorithm to build clauses that would
otherwise not be found in the constrained search space be-
cause the properties of the M2T would not match between
the source and target. We use the improvement in likeli-
hood as the criteria for adding a new predicate or deleting
an existing predicate from the current clause. When adding
a new predicate we consider only attributes of the current
set of objects in the clause and do not add any new rela-

UW-CSE ⇒ IMDb
S: prof(p) ⇒ advisedBy(s,p)
T: genre(per2, gen) ⇒ workedUnder(per1, per2)
S: pub(t, a) ∧ pub(t, b) ∧ prof(a) ∧ stud(b) ⇒

advisedBy(b, a)
T: mov(m, p1) ∧ mov(m, p2) ∧ act(p1) ∧ dir(p2) ⇒

workedUnder(p1, p2)
Yeast ⇒ WebKB

S: interact(a, a) ⇒ protein class(a,c)
T: linkTo(w,wp1,wp2) ⇒ deptOf(wp1, wp2)
S: interact(c,c) ∧ interact(a,d) ∧ interact(c,a) ⇒

protein class(a,b)
T: stud(wp1) ∧ dept(wp2) ∧ linkTo(wd, wp1, wp2) ⇒

deptOf(wp1,wp2)

Table 1: Sample clauses in a source (S) domain and corresponding
transferred clauses from the target (T) domain.

UW-CSE
T: inPh(p1,ph) ∧ inPh(p2,ph) ∧ hasPos(p1,pos)

∧ prof(p1) ⇒ advisedBy(p2,p1)
R: stud(p2) ∧ inPh(p2,ph) ∧ hasPos(p1,pos)

∧ prof(p1) ⇒ advisedBy(p2,p1)
Yeast

T: comp(p,c) ∧ func(p,f) ∧ loc(p,l) ⇒ protein class(p,c)
R: func(p,f) ∧ loc(p,l) ⇒ protein class(p,c)

Table 2: A sample transferred clause (T) and refined clause (R) in
two domains.

tions in the clause. Such refinement has been shown to be
effective in PLMs (Natarajan et al. 2006). We present some
sample transferred clauses in Table 2. For instance, in the
Yeast domain, the complex predicate was dropped and only
function and locations were used for predicting the class. In
UW-CSE, an attribute of the Professor was modified.

Illustration: To provide an idea of transferred rules, we
present a few rules transferred from UW-CSE to IMDb data
set and from Yeast to WebKB data set in Table 1. As can be
seen, the first rule of UW-CSE states that if p is a profes-
sor, then advisedby(p, s) is true i.e., p advises s. The cor-
responding rule in IMDb is that if per2 works in any genre,
then per2 works under per1. A more interesting rule that
maps nicely to a target rule is the following: if a student b
writes a common paper with a professor a, then b is advised
by a. The corresponding rule is that if an actor p1 works in
the same movie directed by a director p2, then p1 works un-
der p2. In the source rule, b and a are the types defined in the
query predicate and the publication t is the new type intro-
duced. Correspondingly in the target domain per1 and per2
are the two types present in query while the movie type mov
is newly introduced. This similarity was obtained by travers-
ing the respective M2T s of the source and target domains.

In summary, the high-level steps of our algorithm are pre-
sented in Figure 3. The source clauses are used to create
M2TS . The target domain description (modes) allows us to
create the possible search tree M2TT for each query pred-
icate based on the language bias introduced from M2TS .



Figure 3: Our approach takes as input the source clauses and the
target domain description and generates the M2T trees. Then, our
transfer learning approach creates clauses in the target domain, and
refines them to output the final model.

Note that this is similar to the mode-directed path finding
algorithm of Ong et al. [2005]. The resulting paths are then
converted to clauses and then softened by learning probabil-
ities from data. Finally, refinement (both probabilistic and
theory) is performed to obtain a more accurate set of clauses
for the target domain queries.

Experiments
In this section, we aim to investigate the following questions:
Q1: Does our method transfer efficiently across seemingly

unrelated domains?
Q2: Does it generate accurate rules for the target domain?
Q3: Does Theory Refinement improve the performance?
Q4: How does our method compare against baselines?

In order to answer these questions, we consider 3 base-
line approaches, which learn models from the minimal tar-
get data: (1) MLN structure learned using Alchemy (MLN
in the results), and (2) TAMAR (Mihalkova et al. 2007),
that performs cross-domain transfer using MLNs. The code
of TODTLER (Haaren et al. 2015) and DTM (Davis and
Domingos 2009) are not yet publicly available and compar-
ison with these methods remains an interesting future direc-
tion.

For the clauses obtained using our LTL algorithm, we em-
ploy 2 methods for learning parameters: (1) weight learning
of Alchemy (LTL WL in the results), and (2) using weighted-
mean as the combination function for these rules(Natarajan
et al. 2009) (LTL CR in the results). Similar to MLN struc-
ture learning, in MLN weight learning, we used the default
settings of Alchemy to learn discriminative weights. In ad-
dition, LTL performed local theory refinement (added and
dropped a predicate from the rules if needed) and learned
parameters using combining rules (LTL CR Ref in the re-
sults).

We experimented with 2 pairs of data sets ((WebKB,
Yeast protein) AND (Cora, IMDb)). In each pair (D1, D2)
we transferred twice, by treating D2 as the target and D1 as
the source, and vice-versa. Since the data sets contain differ-
ent numbers of groups, we employed 4-fold cross-validation
for the first transfer and 5-fold for the second.

To compare the performance of these various methods on
the data sets, we use the following 5 measures: (1) condi-

Table 3: Yeast =⇒ WebKB
METHOD CLL MSE AUC-ROC AUC-PR Time
MLN -0.016 0.003 0.501 0.004 147
TAMAR -TO- -TO- -TO- -TO- -TO-
LTL WL -0.016 0.003 0.504 0.004 38
LTL CR -0.829 0.289 0.901 0.828 26.074
LTL CR Ref -0.587 0.201 0.953 0.921 168.6

Table 4: WebKB =⇒ Yeast
METHOD CLL MSE AUC-ROC AUC-PR Time
MLN -0.059 0.023 0.505 0.027 0.117
TAMAR -0.051 0.024 0.505 0.024 0.083
LTL WL -0.135 0.046 0.498 0.024 1.41
LTL CR -0.784 0.277 0.498 0.378 4.436
LTL CR Ref -0.666 0.236 0.477 0.37 10.87

tional log likelihood (CLL), (2) mean squared-error (MSE),
(3) area under the ROC curve (AUC-ROC), (4) area under
the PR curve (AUC-PR) and (5) time in minutes. It is known
that CLL in relational data sets can be misleading since the
ratio of positive to negative examples is skewed. Predicting
all the examples to be of the majority class can highly lead to
confident yet misleading CLL values. Hence we use AUCs.

WebKB ⇐⇒ Yeast protein: The WebKB dataset was
first created by Craven et al.[2007] and contains information
about department webpages and the links between them. It
also contains the categories for each webpage and the words
within each page. Some examples of predicates present
are student(webPage), linkTo(word,webPage,wordPage),
samePerson(person,person). Here the goal is to predict the
departmentOf(webPage,webPage) relation, which identifies
a person as belonging to a particular department. The Yeast
protein data set (Haaren et al. 2015) was obtained from the
MIPS Comprehensive Yeast Genome Database(Mewes et
al. 2002). The data set includes information about protein
location, function, phenotype, class, and enzymes. Here the
target is the protein class(protein,class) predicate which
classifies a protein to belong to a particular class.

Cora ⇐⇒ IMDb: The Cora data set was first created
by Andrew McCallum and later used by Bilenko et. al.
(Bilenko and Mooney 2003). The goal in this is to pre-
dict the samevenue(venue,venue) relation which identifies
two symbolic venue’s of a conference as representing the
same conference. The data set consists of details of of au-
thors, their papers, and the venue the paper’s are published
at. The goal in the IMDb data set (Mihalkova and Mooney
2007), is to predict the workedUnder(person,person) re-
lation which identifies an actor in the data set as hav-
ing worked for a director. The data set consists of predi-
cates with details like actor(person), movie(movie, person),
genre(movie,genre) etc. and is split into 5 folds.

Results: Tables 3,4,5,6 present the results across the 4
transfer experiments. It can be observed from that tables
that our methods (denoted as LTL X) perform compara-



Table 5: Cora =⇒ IMDb
METHOD CLL MSE AUC-ROC AUC-PR Time
MLN -1.116 0.294 0.501 0.309 6
TAMAR -0.846 0.254 0.501 0.3 7.334
LTL WL -1.937 0.289 0.83 0.769 7.01
LTL CR -0.317 0.102 1.0 1.0 0.11
LTL CR Ref -0.279 0.08 1.0 1.0 0.255

Table 6: IMDb =⇒ Cora
METHOD CLL MSE AUC-ROC AUC-PR Time
MLN -1.876 0.324 0.59 0.505 0.012
TAMAR -1.539 0.321 0.444 0.311 0.45
LTL WL -1.916 0.316 0.647 0.549 1.03
LTL CR -0.616 0.213 0.666 0.574 0.546
LTL CR Ref -0.612 0.211 0.678 0.585 0.851

bly or better than the baselines in all the domains (Q2,Q4).
TAMAR in particular, crashed after 24 hours in the WebKB
domain with a memory exception as the number of predi-
cates/clauses is significantly higher in this domain. MLN’s
default structure learning algorithm was not able to recover
any useful structure in two of the four domains. TAMAR’s
learned MLN mostly consists of priors for all the target pred-
icates. The lack of more informative clauses hurts the per-
formance of TAMAR in most domains resulting in a poor
AUC-ROC.

Comparing the different LTL X approaches, it appears
that the combination function based transfer was better than
the weight learning approach in three domains. This could
be due to Alchemy’s default parameters not being sufficient
to learn useful weights. The most surprising result was that
performing local refinement of clauses (addition/deletion of
a predicate) did not significantly improve the results com-
pared to the probabilistic refinement(Q3). When we closely
analyzed this in the different domains, we realized that the
initial clauses obtained from the type matching themselves
covered many of the useful clauses. We hypothesize that this
is because we are discriminatively learning for some query
predicates. When learning a joint model across several pred-
icates, the refinement operation might prove to be crucial.

When comparing the timings, the combination function
based transfer appears to be mostly faster than both Alchemy
based learning methods (LTL WL and MLN), and when it
isn’t better, it’s performance is better. In the one case where
MLN structure learning and TAMAR are faster (WebKB
=⇒ Yeast), they do not learn any useful clauses and sim-
ply learn the priors (hence low AUC-PR). Hence Q1 can be
answered positively in that the proposed LTL methods are
efficient when compared to the baselines.

Thus we can answer Q1, Q2, and Q4 affirmatively while
Q3 needs investigation in more complex learning settings.

Conclusion
We presented a probabilistic logic approach for cross-
domain transfer. Our proposed LTL algorithm builds on suc-
cesses inside the ILP community to perform matching of
modes (type declarations) in the source and target domains.
These matches are then used as language-bias in the target

domain to restrict the search over all possible clauses. Once
the clauses are obtained in the target domain, the LTL algo-
rithm refines them by softening them by learning parameters
(weights or probabilities) and by performing local search.
Our experimental results demonstrate that this method is
both efficient and effective when compared to a rule learn-
ing algorithm and a recent cross-domain transfer algorithm
(TAMAR). There are several possible interesting directions
for future research. First is to extend the algorithm to gener-
atively transfer the model of the entire domain. Second is to
extend the theory refinement algorithms to consider broader
global refinements than simple local ones that we considered
in this work. Finally, incorporating human-advice in effec-
tively guiding the transfer process remains a fascinating re-
search direction.
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